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Abstract. Using methods of statistical mechanics, we analyse the effect of outliers on the
supervised learning of a classification problem. The learning strategy aims at selecting
informative examples and discarding outliers. We compare two algorithms which perform the
selection either in a soft or a hard way. When the fraction of outliers grows large, the estimation
errors undergo a first-order phase transition.

1. Introduction

The analysis of algorithms which allow one to learn a rule from random examples is an
active and fascinating topic in the area of statistical mechanics. For an overview see e.g.
[1–3]. Many models, where examples arecorrectly classified by ideal experts (often called
teachers), seem to be well understood. Now there is a great deal of interest in nonideal,
but more realistic models, which incorporate the influence of different types of noise in
learning.

In this paper, we study a model where not all examples carry information about the
unknown rule, but where a nonzero fraction of them are just outliers. Naively learningall
examples may considerably deteriorate the ability to infer the rule in such a case. As with
learning with noisy data, some knowledge about the stochastic data generating mechanism
can be helpful. Based on such a stochastic model, a good algorithm could try to select
the informative examples and discard the remaining ones. Since, however, only partial
information is available, such a selection can only be performed approximately and it is
natural to try asoft, probabilistic selection.

Our model leads naturally to such a selection method. It consists of a classification
problem, where data which come from two distributions (classes) centred at different points
are mixed at random with outliers. A Bayesian approach, which aims at calculating the
most probable values for the class centres by minimizing a specifictraining energy is
combined with the so-called expectation maximization (EM) algorithm of Dempsteret al
[4], which nicely deals with the problem of hidden parameters (the knowledge which of
the data are informative) in data mixtures. This procedure leads to an algorithm which
iteratively computes the probability that an example is informative and weights each example
in predicting the unknown class centres of the data generating distributions. Our model
may also be considered as a simple version of themixtures of expertsmodels [5] which
are frequently studied in the neural network literature. In these models, a complicated task
is learnt by a division of labour among several simple learning machines (experts), where
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each expert learns from different subsets of examples. Our model would correspond to two
experts where only one is able to extract information from the examples.

The paper is organized as follows. After an introduction of the learning problem,
two learning strategies are defined in section 2. Section 3 gives the statistical mechanics
formulation of the problem which, based on a replica calculation, leads to a computation
of the learning performance in the thermodynamic limit. In section 4 the algorithmic
implementation of the learning methods using the EM algorithm is explained. Section 5
presents the results of the statistical mechanics calculations and of numerical simulations and
concludes with a discussion. Details of the replica calculations are given in the appendices.

2. The learning problem

We assume that the examples{ξµ, Sµ} (ξµ ∈ RN, Sµ ∈ {±1}), µ = 1, . . . , αN , are
generated alternatively by two different processes. For the first process, the inputξµ is
selected at random from one of two Gaussian clusters (labelled by the outputsSµ = ±1)
which are chosen with equal probability. The clusters are centred at±B and have equal
variance 1/γ . B is anN -dimensional vector withB2/N = 1. The joint probability for
inputs and outputs corresponding to this process can be written as

P(ξµ, Sµ|B) ∝ exp

[
− γ

2

∑
j

(
ξ
µ

j −
1√
N
SµBj

)2 ]
.

The data from this process represent classified examples in a noisy (because the Gaussian
clusters overlap) two-class problem.

In the second process, the inputs come from a single Gaussian centred at zero with the
same variance and the output (chosen±1 with equal probability) is completely independent
from the input. For this case, we make the ansatz

P(ξµ, Sµ|B) ∝ exp

[
− γ

2

∑
j

(ξ
µ

j )
2

]
.

The data from the second process may be understood as representing outliers which do not
contain any information about the two spatially structured classes of inputs and come from
a ‘garbage’ class and are classified purely by random guessing. In order to distinguish the
two processes, we introduce decision variablesV µ ∈ {0, 1}, whereV µ = 1 stands for the
first process andV µ = 0 for the outliers. The joint set of decision variables is denoted by
{V µ}µ. Putting conditions on these variables, we can write the probability distribution for
the joint set ofαN dataD := {ξµ, Sµ}µ, µ = 1, . . . , p = αN within the single equation

P(D|{V µ}µ,B) = 1

2αN

( γ
2π

)αN2/2∏
µ,j

exp

[
−γ

2
(ξ
µ

j )
2+ γ√

N
V µξ

µ

j S
µBj − γ

2N
V µBj

2

]
.

(1)

In order to model the fact that outliers occur at random with a fixed rate, we will assume
that both processes (structure, outliers) are chosen independently at random. The probability
of having the valueV µ is written as

P(V µ) = exp[−ηV µ]

1+ exp[−η]
. (2)

Using the ‘chemical potential’η, we can adjust the average fraction of structured data

V µ = 1

exp[η] + 1
.
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For η = −∞ all examples haveV µ = 1, but with increasingη, fewer examples carry
information. Forη = 0, only half of the examples come from the structure and forη = ∞
all examples are outliers.

A learner tries to infer the vectorB from theαN examples and makes an estimateJ
for B. We will assume that the fraction of outliers is known to the learner. Although in
our final results we mostly deal with the case that also the parameterγ is known precisely,
we shall be more general in the basic definitions and assume that the learner usesγ̃ instead,
with γ 6= γ̃ . Hence, if the{V µ}µ were known, the likelihood of the data based on the
estimateJ would be given by

P(D|{V µ}µ,J) = 1

2αN

(
γ̃

2π

)αN2/2∏
µ,j

exp

[
− γ̃

2
(ξ
µ

j )
2+ γ̃√

N
V µξ

µ

j S
µJj − γ̃

2N
V µJj

2

]
.

In general, however, the learner does not know which of the examples contain information
and which are outliers. Hence, to the learner the{V µ}µ arehidden variableswhich are not
observed but need to be averaged over. Hence, the actual ansatz for the distribution of data
will be given by themixture distribution

P(D|J) =
∑
{V µ}µ

P(D, {V µ}µ|J) (3)

where

P(D, {V µ}µ|J) = P(D|{V µ}µ,J)P({V µ}µ)

= 1

2αN

(
γ̃

2π

)αN2/2 1

(1+ exp[−η])αN
exp

[
− γ̃

2

∑
µ,j

(ξ
µ

j )
2−

∑
µ

V µfµ(J)

]
(4)

and where we have defined

fµ(J) := − γ̃√
N

∑
j

ξ
µ

j S
µJj + γ̃

2N

∑
j

Jj
2+ η.

One possible way of getting an estimate for the unknown vectorB, would be themaximum
likelihood method, i.e. one would use the vectorJ which maximizes the likelihood (3).
A second possibility is given by a Bayesian approach, where the learner supplies some
prior knowledgeabout reasonable estimatesJ within a prior distribution. We will use a
distribution which on average gives the correct length of the unknown vector but does not
favour any spatial direction

P(J) =
(

1

2π

)N/2
exp

[
− 1

2

∑
j

Jj
2

]
. (5)

Based on the prior and the likelihood of the data, the learner can construct the posterior
distribution, using Bayes rule

P(J |D) = P(D|J)P(J)P(D) . (6)

There are several ways of using the information contained in the posterior (6). For example,
simply taking theposterior meanas the estimate forB will minimize the expected average
(with respect to the posterior) squared error. Unfortunately, for a high-dimensional space,
such expectations will not be easy to calculate exactly, and one has to resort to Monte Carlo
sampling. A simpler estimate, which should not perform too poorly, is given by the vector
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J , which has maximala posteriori probability (MAP), i.e. the one which maximizes (6).
Actually, if there are enough data available, one can expect that the posterior will be close
to a Gaussian, and both estimates will come close.

In order to maximize the posteriorP(J |D) with respect toJ , we can equivalently
minimize the ‘training’ energy function

H(J) = − lnP(D,J) = − ln
∑
{V µ}µ

P(D, {V µ}µ|J)P(J). (7)

As we shall see in section 4, there is a simple algorithm to calculate the MAP, based on a
recursive estimation of the (posterior) expected decision variables{V µ}µ. Since examples
are weighted by their probability of being informative rather than being kept or discarded
from the training set, we call this method asoft selectionof examples.

As an alternative to the MAP approach forJ , we shall also discuss an algorithm which
calculates the MAP for the hidden variables{V µ}µ. Since these variables take the values
0 and 1 only, the result will be ahard selection of informative examples, rather than a soft
weighting. We look for the values of{V µ}µ which maximize

P({V µ}µ|D) = P(D, {V
µ}µ)

P(D) . (8)

Equivalently, we can maximize the numerator of this expression, which can be written as a
mixture probability

P(D, {V µ}µ) =
∫

dJ P(D, {V µ}µ,J) (9)

resulting in a training energy

Hh({V µ}µ) = − ln
∫

dJ P(D,J , {V µ}µ). (10)

Finally, after minimization, we can use the expectations

〈Jj 〉J =
∫

dJ JjP(D,J , {V µ}µ)∫
dJ P(D,J , {V µ}µ) (11)

as an estimate for the unknownBj .

3. Analysis by statistical mechanics

In this section, we study the performance of both MAP estimates analytically in the
thermodynamic limitN →∞ using a statistical mechanics framework. We begin first with
the soft selection. There are different ways of measuring how well the learner, equipped
with the MAP estimate, has learnt the structured distribution. An obvious idea is to measure
the quadratic deviation between the true vectorB and the MAP:

1 = 1

N
〈(J −B)2〉 = Q− 2R + 1 (12)

where we have defined the order parameters

R = 1

N
〈J ·B〉

Q = 1

N
〈J〉2.

(13)
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It is also useful to calculate the angle8 = 6 (J ,B) between estimate andB. This angle
8, normalized by 1/π , is given in terms of the order parameters by

8 = 1

π
arccos

J ·B
‖J‖‖B‖ (14)

= 1

π
arccos

R√
Q
. (15)

The order parameters for the soft selection MAP algorithm can be derived from a partition
function Z where the corresponding Hamiltonian is given byH(J) from (7). Assuming
that the inverse temperatureβ is an integer, we define

Z =
∫

dJ exp[−βH(J)]

=
∫

dJ exp[β lnP(D,J)]

=
∫

dJ (P(D,J))β

=
∫

dJ

{ ∑
{V µ}µ

P(D, {V µ}µ,J)
}β

=
∫

dJ
∑
{V µb }µ

β∏
b=1

P(D, {V µb }µ,J). (16)

The MAP, which is the minimum of the energyH(J), is derived from the limitβ →∞.
The caseβ = 1 would correspond to Gibbs learning, where a vectorJ is drawn at random
from the posterior. As usual, order parameters are found from an average of the free energy
f = − 1

βN
lnZ over the distribution of the examples. To perform the average, we utilize

the replica trick

〈f 〉 = − 1

βN
〈lnZ〉

= − 1

βN
lim
n→0

∂

∂n
ln〈Zn〉 (17)

where〈. . .〉 denotes the average over the distribution (see (1) and (2))

P(ξµj , Sµ|B) =
1

2

( γ
2π

)1/2 1

1+ e−η
∑
V µ

exp

[
−γ

2

(
ξ
µ

j −
1√
N
V µSµBj

)2

− ηV µ
]
.

The replicated partition function is now written as

Zn =
∑
{V µab}µ

∫ ∏
a

dJa
∏
a,b

P(D, {V µab}µ,Ja) (18)

where the decision variables containtwo replica indices. Here, the indexa runs from 1
to n, whereasb runs from 1 toβ. For the subsequent calculations we have assumed the
correct parametersγ = γ̃ and have made areplica symmetric ansatzwith respect to the
indicesa. We think that this should be at least a good approximation, because our model is
an example of ateacher–studentlearning scenario, where student and teacher match in the
sense that the student uses the right statistical model for the data. For the Gibbs learning
scenario (β = 1), where the symmetry of student and teacher becomes perfect in the replica
calculation (this can be seen by introducing a further average overB, using the prior (5)),
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replica symmetry is usually considered to be exact (although no general proof has been
given so far). Hence, assuming that the effects of replica symmetry-breaking are small, we
have refrained from performing a replica stability analysis.

The treatment of the replica indicesb is much simpler, because the order parameters
(see appendix A) do not depend on them. Hence, as long asβ is an integer, no further
symmetry assumptions are required for theb’s. Although we do not have a proof that the
continuation to nonintegerβ is unique, we expect that the limitβ →∞ exists and can be
safely calculated using a sequence of integers.

The hard selection problemof decision variables is treated similarly using the (zero
temperature) free energy which is defined from the partition function

Zh =
∑
{V µ}µ

e−βHh({V
µ}µ) (19)

with the energy (10). The averages which are necessary for the calculation of error measures,
e.g.

8 = 1

π
arccos

∑
j 〈Jj 〉JBj√∑
j 〈Jj 2〉J

√
N

(20)

can be found in a standard way from derivatives of the free energy with respect to appropriate
external fields, e.g.∑

j

〈Jj 〉JBj = − lim
λ→0

∂

∂λ
lim
β→∞

1

β
ln
∑
{V µ}µ

e−βHh({V
µ}µ,λ) (21)

where

Hh({V µ}µ, λ) = − ln
∫

dJ P(D,J , {V µ}µ) exp

[
− λ

∑
j

JjBj

]
.

Explicit calculations of the free energies and order parameters for both cases are given in
the appendices.

4. The EM algorithm

Unfortunately, the maximization of the posterior distributions cannot be carried out in closed
form and must be done numerically. Usually, nonlinear optimization problems are solved
by gradient descent algorithms which require a tuning of the step sizes. However, for the
type of (generalized) maximum likelihood problem for mixture distributions such as (3) and
(9), there is a simpler and well known algorithm which has been developed by Dempster
et al [4]. The EM algorithm guarantees that the (generalized) likelihood is nondecreasing
for every iteration step and converges to a local maximum. To explain the idea for the soft
selection problem, let us assume for the moment that the hidden variables{V µ}µ are actually
known. Then the corresponding log-likelihood ln[P(D, {V µ}µ|J)P(J)] can be maximized
in closed form. In the EM algorithm, the true values of the hidden variables are replaced
iteratively by suitable averages. At iterationi, in the expectation step, the function

A(J ,J (i)) := 〈ln[P(D, {V µ}µ|J)P(J)]〉P({V µ}µ|D,J (i)) (22)

is calculated, which is the log-likelihood of observed and hidden data averaged over the
posterior distribution of the hidden data, given the old estimateJ (i). In the maximization
step, (22) is maximized with respect toJ in order to obtain the new iterationJ (i+1).
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We will not give the proof of convergence here, as it is relatively simple and can be
found in many textbooks (see e.g. [6]). However, we can easily see that a fixed point of
the algorithm is also a local extremum of (7). At the maximum of (22), we have

0= ∂

∂Jk
A(J ,J (i)) = ∂

∂Jk
〈ln[P(D, {V µ}µ|J)P(J)]〉P({V µ}µ|D,J (i))

=
∑
{V µ}µ

∂
∂Jk
P(D, {V µ}µ,J)P(D, {V µ}µ,J (i))
P(D, {V µ}µ,J)P(D,J (i)) .

Hence, at the fixed point, whereJ (i) = J , we also have ∂
∂Jk

lnP(D,J) = 0. For the
explicit calculation, we need the conditional distribution of the hidden variables, given the
data andJ

P({V µ}µ|D,J) = P(D, {V
µ}µ,J)

P(D,J)

=
∏
µ

exp[−V µfµ(J)]
1+ exp[−fµ(J)] . (23)

Using the distribution (2), we get

∂

∂Jk
A(J ,J (i)) = −γ̃

∑
µ

〈V µ〉
(
− 1√

N
ξ
µ

k S
µ + 1

N
Jk

)
− Jk

!= 0

which gives

J =
√
N
∑

µ〈V µ〉ξµSµ∑
µ〈V µ〉 +N/γ̃

(24)

where

〈V µ〉 =
∑

V µ=0,1

V µP(V µ|D,J (i))

= 1

exp[fµ(J (i))] + 1
. (25)

Hence, the estimateJ for B is of the form of aweighted Hebbiansum, where each example
has a weight which is proportional to the estimated probability〈V µ〉, that the example is
not an outlier. It is interesting to look at the limiting caseη→−∞, i.e. where all examples
are from the double cluster and where no outliers are present. In this case the EM iteration
stops after one step and we get

〈V µ〉 = 1 for all µ

J = 1√
N

∑
µ ξ

µSµ

α + 1/γ̃

(26)

which is the usual Hebbian vector.
Similarly, to apply the EM algorithm to the hard selection problem with the mixture

distribution (9), we takeJ as the hidden quantity. In each iteration step, we have to
maximize

Â({V µ}µ, {V µ}(i)µ ) := 〈lnP(D, {V µ}µ,J)〉P(J |D,{V µ}(i)µ )
= − γ̃

2

∑
µ,j

(ξ
µ

j )
2+ γ̃√

N

∑
µ,j

V µξ
µ

j S
µ〈Jj 〉 − γ̃

2N

∑
µ,j

V µ〈Jj 2〉
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−η
∑
µ

V µ − 1
2

∑
j

〈Jj 2〉 (27)

with respect to{V µ}µ. Defining

a := γ̃

N

∑
µ

V µ(i) + 1

bj := γ̃√
N

∑
µ

V µ(i)ξ
µ

j S
µ

(28)

we obtain for the expectations at stepi

〈Jj 〉 = bj

a

=
√
N
∑

µ V
µ(i)ξ

µ

j S
µ∑

µ V
µ(i) +N/γ̃

〈Jj 2〉 = bj
2

a2
+ 1

a
.

(29)

Finally, after convergence, we use〈Jj 〉 as an estimate forBj .

5. Results and discussion

5.1. Soft selection

Solving for the order parameters and assuming thatγ̃ = γ we find that for fixedη, as
expected, both error measures8 and1 decrease towards 0 with an increasing numberαN

of examples, showing that the algorithm is able to find the true structure vectorB. Since
for the EM algorithm both error measures show qualitatively the same behaviour; we shall
concentrate mainly on the angle8.

Figure 1 shows1(α) for η = 0. The second curve gives the performance of the Hebbian
rule (26). It demonstrates the importance of selecting informative examples. If all examples
are weighted equally (andη 6= ∞), then the true vectorB cannot be recovered forα→∞.
In figure 2,8(α) (EM algorithm) is shown forη = 0 andη = 4. Since it was harder to
perform simulations forη = 4, where only about 1.8% of the examples are informative, we
have shown simulations only forη = 0. Asymptotically one finds a decrease of the error
along the lines of

8
α→∞' 1

πR∞

√
c

α
(30)

whereR∞ is the asymptotic value of the order parameterR and bothR∞ and c depend
on η.

As expected, for fixedα, the error increases withη, i.e. with a growing number of
outliers. More interesting is the nonsmooth behaviour of the second curve, which gives a
sudden drop of the error asη is varied. This phase transition can be observed in more detail
in the relief plot of the order parametersR andQ in figures 3(a) and (b). In regions of
largeη or largeα, the saddle-point equations have three solutions. Taking the solution with
the smallest free energy leads to a jump of the order parameters. It is easier to investigate
the transition by simulations as a function ofη, for fixed α. This is shown in figure 4,
together with the predictions of the theory.
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Figure 1. Comparison between the EM algorithm and naive Hebbian rule. Parameters are
η = 0, γ = γ̃ = 10. The full curves show the theoretical results. Simulations were done with
N = 500. Here and in following figures, bars mark standard deviations over 100 runs.

Figure 2. 8(α) for η = 0 andη = 4, respectively (MAP estimate). The simulations atη = 0
were performed withN = 500; results were averaged over 100 runs.
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Figure 3. Order parametersR(α, η) (top) andQ(α, η) (bottom) for MAP. As in figure 2 and
subsequently, we setγ = γ̃ = 10.
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Figure 4. Error 8 for soft selection versus amount of outliers, represented byη. The relative
number of data is fixed atα = 20. The broken length of the theoretical curve denotes the region
where three solutions of the saddle-point equations exist. The full curve follows the solution
with minimal free energy. Simulations were results from 100 runs withN = 100. Note that,
for finite N , the transitions of the two order parameters do not coincide. The error measure8

roughly follows the overlapR between solution vector and structure axis, whereas the drop in
Q gives rise to the increased standard deviation atη = 6.8. The inset shows a finite-size scaling
of the phase transition as described in the text. The corresponding dimensions of the data are
N = 10, 25, 50, 100, 1000 respectively.

We have simulated the EM algorithm starting from random initial conditions and
averaged the order parameters over many samples of random inputs. Fixingα, the
simulations show a good agreement with the theory for small and large values ofη, but
discrepancies show up close to the predicted transition. Since the average fractionV̄ of
informative data points decreases exponentially withη, finite-size effects play a crucial role
in the simulations. For example, forη = 4, less than two examples out ofN = 100 are
informative on average whereas the replica theory is based on infinitely many examples
from the structured clusters. Hence, we have performed a finite-size scaling to determine
the critical valueV̄0, where the transition sets in. Since for smallη (largeV̄ ), the simulations
show rather small statistical fluctuations around a value ofR close to 1, we have (for each
N ) definedV̄0 as the point, where the distribution of the observed values forR significantly
broadens, indicating the onset of transitions to different values ofR. A simple linear
extrapolation toN = ∞ as shown in the inset of figure 4 gives a value forV̄0 which is
in good agreement with the predicted value for the phase transition. The large error bar at
η = 6.8 is explained from the fact that the values for8 (equation (14)) have been obtained
by using the sample averages ofR andQ which (for finiteN ) show a transition at slightly
different values ofη.
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Figure 5. Critical fraction of outliers for hard selection as a function ofα (full curve). The
broken curve represents the phase transition for soft selection.

5.2. Hard selection

Solving the order-parameter equations for the free energy (B1) at zero temperature, we find
similar first-order transitions as for the method of soft selection. Forη small enough, there
is only one solution which has a nonzero overlap to the teacher vectorB. Increasingη (and
thereby the number of outliers) beyond a valueη0, another solution withR̂ = Q̂ = ẑ = 0
(see equation (B1)) appears, i.e. where allV µ = 0 and all data are considered to be outliers.
Here

η0 = − γ̃
2
+ γ̃ 2

4γ
. (31)

Betweenη0 and a second parameter valueηc, however, this trivial solution has a higher
free energyfh = 0 than the nontrivial one. Finally, forη > ηc, the trivial solution with
zero order parameters, giving rise to8 = 1

2, is the one with lowest free energy. Figure 5
shows this criticalη as a function ofα.

So, unlike in the soft selection case, we have, for a large range ofη, two solutions of
the order-parameter equations. This is reflected in the simulations, the single runs clearly
tending to either of these two optima. Effects of metastability (which would be a sign
of a rugged energy landscape and indicate strong effects of replica symmetry-breaking)
could not be observed. However, a finite-size scaling for the transition point did not lead
to a satisfactory agreement with the theory. We think that the observed discrepancy is
a dynamical effect, where the EM algorithm, starting from a random initial condition, is
unable to reach the global minimum and converges only to the local one, thus shifting the
phase transition to smaller values ofη. We have balanced this effect to some extent by
keeping only those simulations (as long as they occur) where the EM algorithm converges
to the solution with nonzero overlap to the vectorB.
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Figure 6. Error8 for hard selection versus amount of outliers, represented byη. As in figure 4,
α = 20 and simulations were performed withN = 100 and 100 runs. The full curve indicates
the theoretical result for the global optimum, the broken line for the local one.

Figure 6 shows the performance of the hard selection forα = 20. Comparision to
figure 4 suggests that the soft selection should be preferred. The difference between the
performance of the two algorithms becomes more drastic forα → ∞: the soft selection
algorithm is able to tolerate anarbitrary fraction of outliers as long as enough data are
available. Eventually, it will always find the true teacher vectorB. On the other hand,
for hard selection, the explicit solution of the order-parameter equations forα→∞ shows
that there is always a critical fraction of outliers (corresponding to a parameterηc (B3))
where learning is no longer possible even if inifinitely many examples are available. It is
also interesting to investigate the influence of the overlap of the two Gaussian clouds in the
structured input distribution on the transition parameterηc. Figure 7 showsηc for α = ∞
as a function ofγ , which gives the inverse squared width of each Gaussian and so measures
the distinguishability of the clouds. Somewhat surprisingly, ifγ is below 0.278, the critical
η jumps discontinuously to zero, i.e. if the overlap of the two clouds is above a certain
value, only 50% outliers can be tolerated.

Phase transitions in the performance of learning algorithms have been observed
frequently in the statistical mechanics of neural networks. Since such effects do not occur
in asymptotic (in the sense of largeα) expansions or in the exact bounds known in statistics
they seem to be one of the major contributions of statistical mechanics to the field of
computational learning theory. Phase transitions occur in multilayer networks, where they
are can be related to the breaking of symmetries which are related to the network architecture
[12, 11]. Other examples include models with a so-called student–teacher mismatch [13],
models with discrete adjustable parameters [7, 8] and models of unsupervised learning
[9, 10]. For the present supervised learning model, where the basic adjustable parameters
are continuous variables and where the learner matches with the distribution of the data,
the phase transition was unexpected. It will be interesting to apply recently developed
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Figure 7. Asymptotic critical fraction of outliers for hard selection, plotted against inverse
squared width of the Gaussian clusters.

combinations of statistical mechanics techniques and methods of information theory [14] to
establish the existence of phase transitions in mixture models in more general circumstances.

Appendix A. Free energy and order parameters for soft selection

Upon averaging, we obtain

〈Zn〉 =
∑
{V µab}µ

∫ ∏
a,j

dJ aj exp

[
−
∑
a,b

(
γ̃

2N

∑
µ

V
µ

ab +
1

2

)∑
j

(J aj )
2− η

∑
a,b

∑
µ

V
µ

ab

]

×
〈

exp

[
− γ̃ nβ

2

∑
µ,j

(ξ
µ

j )
2+ γ̃√

N

∑
a,b

∑
µ,j

V
µ

abξ
µ

j S
µJ aj

]〉
.

Within replica symmetry, the introduction of the order parameters

R = 1

N
〈J ·B〉 = 1

N

∑
j

J aj Bj

q = 1

N
〈J2〉 = 1

N

∑
j

J aj J
ã
j

Q = 1

N
〈J〉2 = 1

N

∑
j

(J aj )
2

together with their conjugates yields

〈Zn〉 ∝
∫ ∏

a,j

dJ aj exp

[
iN8

(
1

N

∑
j,a

J aj Bj − nR
)]
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×
∏

exp

[
iNω

(
1

N

∑
j,a,ã 6=a

J aj J
ã
j − n(n− 1)q

)]
× exp

[
iN�

(
1

N

∑
j,a

(J aj )
2− nQ

)]
×
∑
{V µab}µ

(∏
a,b

exp

[
−
(
γ̃

2

∑
µ

V
µ

ab +
1

2
N

)
Q− η

∑
µ

V
µ

ab

])

×
(∏

µ

exp

[
1

1+ nβγ̃ /γ
(
− 1

2
γ̃ nβ(V µ)2+ γ̃

∑
a,b

V
µ

abV
µR

+ γ̃
2

2γ

∑
a,ã 6=a

∑
b,b̃

V
µ

abV
µ

ãb̃
q + γ̃ 2

2γ

∑
a

∑
b,b̃

V
µ

abV
µ

ab̃
Q

)
− ηV µ

])
.

In this expression (and in the following one) the order parameters have to be taken at their
saddle-point values. After a lengthy calculation, we arrive at an expression for the free
energy

f = 1

β

R2−Q
2(Q− q) −

1

2β
ln(Q− q)+ 1

2
Q− α

β
M(R, q,Q)+ constant (A1)

with

M(R, q,Q) = 1

1+ e−η

∫
Dx

{
ln

(∫
Dy

(
1+ exp

[
− γ̃

2
Q− η + γ̃

√
q

γ
x

+γ̃
√
Q− q
γ

y

])β)
− 1

2
e−ηγ̃ ρ2β

+e−η ln

(∫
Dy

(
1+ exp

[
− γ̃

2
Q− η + γ̃ R

+γ̃
√
q

γ
x + γ̃

√
Q− q
γ

y

])β)}
.

For β → ∞ we have to take the limitq → Q. With the ansatz(Q − q)β =: z = O(1),
we get in the limit

f = R2−Q
2z

+ 1

2
Q− α

1+ e−η

(
Î5+ b

2
Î1

)
− αe−η

1+ e−η

(
I5+ b

2
I1

)
+ constant. (A2)

This yields the saddle-point equations

0
!= ∂f

∂R
= R

z
− αe−η

1+ e−η

(
I6+ b

2
I2

)
γ̃

0
!= ∂f

∂z
= Q− R2

2z2
− α

1+ e−η
Î4
γ̃ 2

2γ
− αe−η

1+ e−η
I4
γ̃ 2

2γ

0
!= ∂f

∂Q
= − 1

2z
+ 1

2
− α

1+ e−η

(
γ̃

2

(
Î6+ b

2
Î2

)
+ γ̃

2
√
γQ

(
Î7+ b

2
Î3

))
− αe−η

1+ e−η

(
γ̃

2

(
I6+ b

2
I2

)
+ γ̃

2
√
γQ

(
I7+ b

2
I3

))
where

I1 :=
∫

Dx
1

e−2a + 1+ (2− b)e−a
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I2 :=
∫

Dx
2e−2a + (2− b)e−a

(e−2a + 1+ (2− b)e−a)2

I3 :=
∫

Dx
2e−2a + (2− b)e−a

(e−2a + 1+ (2− b)e−a)2x

I4 :=
∫

Dx
e−2a + 1+ 2e−a

(e−2a + 1+ (2− b)e−a)2

I5 :=
∫

Dx ln(1+ ea)

I6 :=
∫

Dx
1

e−a + 1

I7 :=
∫

Dx
x

e−a + 1
.

For theÎj , a has to be replaced bŷa, where

a := − γ̃
2
Q− η + γ̃ R + γ̃

√
Q

γ
x

â := − γ̃
2
Q− η + γ̃

√
Q

γ
x

b := γ̃ 2

γ
z.

Appendix B. Free energy and order parameters for hard selection

The Hamiltonian (10) is explicitly given by

Hh({V µ}µ) := − ln
∫

dJ P(D,J , {V µ}µ)

= −
[

γ̃ 2

2N(γ̃ Q̂+ 1)

∑
µ,ν

V µV ν
∑
j

ξ
µ

j ξ
ν
j S

µSν − γ̃
2

∑
µ,j

(ξ
µ

j )
2− η

∑
µ

V µ
]

+(N/2) ln(γ̃ Q̂+ 1)− lnC

where

C := 1

2αN

(
γ̃

2π

)αN2/2 1

(1+ exp[−η])αN

(
1

2π

)N/2
with the order parameters

R̂ := 1

N

∑
µ

V µa V
µ

q̂ := 1

N

∑
µ

V µa V
µ

ã

Q̂ := 1

N

∑
µ

(V µa )
2 = 1

N

∑
µ

V µa .
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Averaging the partition function (19) yields

〈Znh〉 =
(

1

1+ e−η

)αN ( 1

1+ nβγ̃ /γ
)αN2/2 ∑

{V µa ,V µ}µ

∫ ∏
a,j

Dyaj

× exp

[
− η

∑
µ

V µ + 1

2(1+ nβγ̃ /γ )
(
− nβγ̃

∑
µ

V µ

+ 2γ̃
√
β√

γ̃ Q̂+ 1

∑
j

∑
a

yaj Bj R̂ +
γ̃ 2β

γ (γ̃ Q̂+ 1)

∑
j

∑
a,ã 6=a

yaj y
ã
j q̂

+ γ̃ 2β

γ (γ̃ Q̂+ 1)

∑
j

∑
a

(yaj )
2Q

)
− nNβηQ̂

]
(γ̃Q+ 1)−nNβ/2Cnβ.

The free energyfh simplifies in the limitβ →∞, where the scalingβ(q̂−Q̂) =: ẑ = O(1)
is used. We finally obtainfh as a function of the actual order parameters at the saddle point:

fh = ηQ̂+ 1

2
ln(Q̂γ̃ + 1)− (Q̂+ 2R̂2γρ2)(Q̂γ̃ + 1)γ γ̃ 2

4(Q̂γ γ̃ + ẑγ̃ 2+ γ )2 . (B1)

A similar calculation using (21) yields the averages∑
j

〈
Jj
〉
J
Bj = N R̂γ̃

Q̂γ̃ + 1

(
1− ẑγ̃ 2

Q̂γ γ̃ + ẑγ̃ 2+ γ

)
∑
j

〈Jj 2〉J = N γ γ̃ 2(Q̂+ 2R̂2γ )

2(Q̂γ γ̃ + ẑγ̃ 2+ γ )2 +N
1

Q̂γ̃ + 1
.

(B2)

In the limit α → ∞, the resulting order-parameter equations can be further simplified
by making the scaling ansatzêR = αR̂0, Q̂ = αQ̂0, ẑ = −αẑ0, where R̂0, Q̂0, ẑ0 are
independent ofα asα →∞. For γ = γ̃ , the equation for the critical ratio of outliersηc,
where the trivial solution with zero order parameters has the global minimum of the free
energy, is determined from

0= η − 2γπη exp[γ + 2η]82
[√
γ −

√
2η
]/{

exp
[√

2γ η
]
+ exp[γ /2+ η]

+ √πη exp[γ /2+ η]
(
−28

[√
γ −

√
2η
]
− 2eη + 2eη8

[√
2η
])}2

. (B3)
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